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3 Departamento de Óptica, Facultad de Fı́sica, Universidad Complutense, 28040 Madrid, Spain

Received 14 November 2006, in final form 7 February 2007
Published 20 March 2007
Online at stacks.iop.org/JPhysA/40/3987

Abstract
We propose a unifying phase-space approach to the construction of mutually
unbiased bases for a two-qubit system. It is based on an explicit classification of
the geometrical structures compatible with the notion of unbiasedness. These
consist of bundles of discrete curves intersecting only at the origin and satisfying
certain additional properties. We also consider the feasible transformations
between different kinds of curves and show that they correspond to local
rotations around the Bloch-sphere principal axes. We suggest how to generalize
the method to systems in dimensions that are powers of a prime.

PACS numbers: 03.67.−a, 03.65.Ca

1. Introduction

The notion of mutually unbiased bases (MUBs) emerged in the seminal work of Schwinger [1]
and it has turned into a cornerstone of the modern quantum information. Indeed, MUBs play
a central role in a proper understanding of complementarity [2–6], as well as in approaching
some relevant issues such as optimum state reconstruction [7, 8], quantum key distribution
[9, 10], quantum error correction codes [11, 12] and the mean king problem [13–17].

For a d-dimensional system (also known as a qudit) it has been found that the maximum
number of MUBs cannot be greater than d + 1 and this limit is reached if d = p is a prime
[18] or a power of prime, d = pn [19]. It was shown in [20] that the construction of MUBs
is closely related to the possibility of finding d + 1 disjoint classes, each one having d − 1
commuting operators, so that the corresponding eigenstates form sets of MUBs. Since then,
different explicit constructions of MUBs in prime power dimensions have been suggested in
a number of papers [21–27].

The phase space of a qudit can be seen as a d ×d lattice whose coordinates are elements of
the finite Galois field GF(d) [28]. At first sight, the use of elements of GF(d) as coordinates
could be seen as an unnecessary complication, but it proves to be an essential step: only
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by doing this we can endow the phase-space grid with the same geometric properties as the
ordinary plane. There are several possibilities for mapping quantum states onto this phase
space [29–31]. However, special mention must be made of the elegant approach developed by
Wootters and coworkers in [32, 33], which has been used to define a discrete Wigner function
(see [34–36] for picturing qubits in phase space). Any good assignment of quantum states to
lines is called a ‘quantum net’. In fact, there is not a unique quantum net for a given d × d

phase space. However, one can manage to construct lines and striations (sets of parallel lines)
in this phase space: after an arbitrary choice that does not lead to anything fundamentally new,
it turns out that the orthogonal bases associated with each striation are mutually unbiased.

In this paper, we proceed just in the opposite way. We start by considering the geometrical
structures in phase space that are compatible with the notion of unbiasedness. By taking the
case of two identical two-dimensional systems (i.e., two qubits) as the thread for our approach,
we classify these admissible structures into rays and curves (and the former also in regular and
exceptional, depending on the degeneracy). To each bundle of curves, we associate a MUB,
and we show how these MUBs are related by local transformations that do not change the
corresponding entanglement properties. Finally, we sketch how to extend this theory to higher
(power of prime) dimensions. We hope that this new method can seed light on the structure
of MUBs and can help to resolve some of the open problems in this field. For example,
all the MUB structures in 8- and 16-dimensional Hilbert space are known [37], but in the
16-dimensional case the transformations going from one structure to any other are unknown
and hitherto a method to find them (in any space dimension) has been lacking. Our approach
provides a means to find such transformations in a systematic manner.

2. Constructing a set of mutually unbiased bases

When the space dimension d = pn is a power of a prime it is natural to conceive the system
as composed of n constituents, each of dimension p [38]. We briefly summarize a simple
construction of MUBs for this case, according to the method introduced in [27], although
focusing on the particular case of two qubits. The main idea consists in labelling both the
states of the subsystems and the generators of the generalized Pauli group (acting in the four-
dimensional Hilbert space) with elements of the finite field GF(4), instead of natural numbers.
In particular, we shall denote as |α〉 with α ∈ GF(4) an orthonormal basis in the Hilbert space
of the system. Operationally, the elements of the basis can be labelled by powers of a primitive
element (that is, a root of the minimal irreducible polynomial, σ 2 + σ + 1 = 0), so that the
basis reads

{|0〉, |σ 〉, |σ 2 = σ + 1〉, |σ 3 = 1〉}. (2.1)

These vectors are eigenvectors of the generalized position operators Zβ ,

Zβ =
∑

α∈GF(4)

χ(αβ)|α〉〈α|, (2.2)

where henceforth we assume α, β ∈ GF(4). Here χ(θ) is an additive character

χ(θ) = exp[iπ tr(θ)], (2.3)

and the trace operation, which maps elements of GF(4) onto the prime field GF(2) � Z2,
is defined as tr(θ) = θ + θ2. The diagonal operators Zβ are conjugated to the generalized
momentum operators Xβ ,

Xβ =
∑

α∈GF(4)

|α + β〉〈α|, (2.4)
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precisely through the finite Fourier transform

FXβF † = Zβ, (2.5)

with

F = 1

2

∑

α,β∈GF(4)

χ(αβ)|α〉〈β|. (2.6)

The operators {Zα,Xβ} are the generators of the generalized Pauli group

ZαXβ = χ(αβ)XβZα. (2.7)

In consequence, we can form five sets of commuting operators (which from now on will be
called displacement operators) as follows:

{Xβ}, {ZαXβ=µα}, (2.8)

with µ ∈ GF(4). The displacement operators (2.8) can be factorized into products of powers
of single-particle operators σz and σx , whose expression in the standard basis of the two-
dimensional Hilbert space is

σz = |1〉〈1| − |0〉〈0|, σx = |0〉〈1| + |1〉〈0|. (2.9)

This factorization can be carried out by mapping each element of GF(4) onto an ordered set
of natural numbers [33], α ⇔ (a1, a2), where aj are the coefficients of the expansion of α in
a field basis θj

α = a1θ1 + a2θ2. (2.10)

A convenient field basis is that in which the finite Fourier transform is factorized into a
product of single-particle Fourier operators. This is the so-called self-dual basis, defined by
the property tr(θiθj ) = δij . In our case the self-dual basis is (σ, σ 2) and leads to the following
factorizations:

Zα = σa1
z σ a2

z , Xβ = σb1
x σ b2

x , (2.11)

where α = a1σ + a2σ
2 and β = b1σ + b2σ

2. Using this factorization, one can immediately
check that, among the five MUBs that exist in this case, three are factorable and two are
maximally entangled [39]. Although the factorization of a particular displacement operator
depends on the choice of a basis in the field, the global separability properties (i.e., the
number of factorable and maximally entangled MUBs) are basis independent. That is, any
nonlocal unitary transformation that yields only factorable or maximally entangled bases (i.e.,
a transformation from the Clifford group) will provide an isomorphic set of MUBs with respect
to the separability, except, perhaps, for some trivial permutations. Nevertheless, this property
holds only for two qubits because for higher dimensional cases more complicated structures
arise [37].

3. Mapping the mutually unbiased bases onto phase space

The problem of MUBs can be further clarified by an appropriate representation in phase space,
which is defined as a collection of ordered points (α, β) ∈ GF(4) × GF(4). In this finite
phase space the operators from the five sets (2.8) are labelled by points of rays (i.e., ‘straight’
lines passing through the origin). The vertical axis has α = 0 and the horizontal axis has
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Table 1. Rays and their associated physical operators.

Basis Ray Factorized operators

1 β = 0 σz11 11σz σzσz

2 β = α σy11 11σy σyσy

3 β = σα σzσx σxσy σyσz

4 β = σ 2α σyσx σxσz σzσy

5 α = 0 σx11 11σx σxσx

Figure 1. Phase-space picture corresponding to the construction in table 1.

β = 0. For our case, we explicitly have

β = 0 → Zσ ,Zσ 2 , Zσ 3

β = α → ZσXσ ,Zσ 2Xσ 2 , Zσ 3Xσ 3

β = σα → ZσXσ 2 , Zσ 2Xσ 3 , Zσ 3Xσ

β = σ 2α → ZσXσ 3 , Zσ 2Xσ ,Zσ 3Xσ 2

α = 0 → Xσ ,Xσ 2 , Xσ 3

(3.1)

where the left column indicates the ray corresponding to the operators appearing in the three
rightmost columns. In the factorized form, the set in (3.1) can be expressed as in table 1.

In figure 1 we plot the phase-space representation of the sets of operators in table 1. Each
set has been arbitrarily assigned to the number appearing in the left column of the table. The
sets of operators 1 and 5 define the horizontal and the vertical axes, respectively, and they
lead, together with the operators associated with line 2, to three separable bases (i.e., the three
operators in each of the first three rows commute for each of the two subsystems, separately).
In physical space, all these operators can be associated with rotations of each qubit around
the z-, x- and y-axis, respectively. Eigenstates of the operators associated with the lines 3 and
4 form entangled bases (in fact, their simultaneous eigenstates are all maximally entangled
states). The origin is labelled as o and is the common intersecting point of all the rays.

It is clear that under local transformations the factorable and entangled MUBs preserve
their separability properties. Two natural questions thus arise in this respect: Is the arrangement
in table 1 and the corresponding geometrical association with rays in phase-space unique? If
this is not the case, why do different arrangements always lead to the same separability
structure of MUBs?

4. Curves in phase space

To answer these questions we shall approach the problem from a different perspective, namely,
by determining all the possible geometrical structures in phase space that correspond to MUBs.
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First of all, let us observe that any ray can be defined in the parametric form

α(κ) = ηκ, β(κ) = ζκ, (4.1)

where η, ζ ∈ GF(4) are fixed while κ ∈ GF(4) is a parameter that runs through all the field
elements. The rays (4.1) can be seen as the simplest nonsingular (i.e., no self-intersecting)
Abelian substructures in phase space, in the sense that

α(κ + κ ′) = α(κ) + α(κ ′), β(κ + κ ′) = β(κ) + β(κ ′). (4.2)

However, the rays are not the only Abelian structures: it is easy to see that the parametric
curves (that obviously pass through the origin)

α(κ) = µ0κ + µ1κ
2, β(κ) = η0κ + η1κ

2, (4.3)

also satisfy condition (4.2). If, in addition, we impose

tr(αβ ′) = tr(α′β), (4.4)

where α′ = α(κ ′) and β ′ = β(κ ′), then the displacement operators associated with the
curves (4.3) commute with each other and the coefficients µj and ηj must satisfy the following
restrictions (commutativity conditions)

µ1η0 + (µ1η0)
2 = µ0η1 + (µ0η1)

2. (4.5)

All the possible Abelian curves satisfying condition (4.5) can be divided into two types:

(a) regular curves

α-curves: α = σκ, β = ηκ + σ 2κ2,

β-curves: β = σκ, α = ηκ + σ 2κ2.
(4.6)

(b) exceptional curves

α = µ(κ + κ2), β = µ2(σκ + σ 2κ2). (4.7)

The regular curves are nondegenerate, in the sense that α or β (or both) are not repeated
in any set of four points defining a curve. In other words, α or β (or both) take all the values in
the field GF(4). This allows us to write down explicit relations between α and β as follows:

α-curves: β = ησ 2α + α2,

β-curves: α = ησ 2β + β2.
(4.8)

By varying the parameter η in the first of equations (4.8) we can construct the α-curves in
table 2, which show a different arrangement of operators than (3.1). Figure 2 shows the
corresponding points of α-curves in phase space. Note, that we have completed table 2 and
figure 2 with the vertical (Xσ ,Xσ 2 , Xσ 3) axis. The factorization of operators in each table (the
self-dual basis is used for the representation of operators in terms of Pauli matrices) is different
from the standard one in table 1. The curves marked as 3, 4 and 5 lead now to factorable
MUBs, while those marked as 1 and 2 lead to maximally entangled bases.

The β-curves and the corresponding table can be obtained from table 2 by exchanging
α and β (and correspondingly Z and X operators) and is given in table 3. The phase-space
picture corresponding to table 3 is shown in figure 3 and can easily be obtained from figure 2
by mirroring this figure about the main diagonal. Observe that the curves β = α2 and α = β2

then become identical, since this curve is symmetric about the diagonal.
It is worth noting that all the α-curves, except β = α2, are β-degenerate: the same value

of β corresponds to different values of α. Obviously, the analogous α-degeneration appears
in the β-curves.
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Table 2. α-curves and their corresponding operators.

Basis α-curves Displacement operators Factorized operators

1 β = α2 Zσ 2 Xσ ,Zσ 3 Xσ 3 , Zσ Xσ 2 σxσz σyσy σzσx

2 β = α + α2 Zσ 2 Xσ 3 , Zσ 3 , Zσ Xσ 3 σxσy σzσz σyσx

3 β = σα + α2 Zσ 2 Xσ 2 , Zσ 3 Xσ 2 , Zσ 11σy σzσy σz11
4 β = σ 2α + α2 Zσ 2 , Zσ 3 Xσ , Zσ Xσ 11σz σyσz σy11
5 α = 0 Xσ ,Xσ 2 , Xσ 3 σx11 11σx σxσx

Figure 2. Phase-space picture corresponding to the construction in table 2.

Table 3. Phase-space β-curves and their corresponding operators.

Basis β-curves Displacement operators Factorized operators

1 α = β2 Xσ 2 Zσ , Xσ 3 Zσ 3 , Xσ Zσ 2 σzσx σyσy σxσz

2 α = β + β2 Xσ 2 Zσ 3 , Xσ 3 , Xσ Zσ 3 σzσy σxσx σyσz

3 α = σβ + β2 Xσ 2 Zσ 2 , Xσ 3 Zσ 2 , Xσ 11σy σxσy σx11
4 α = σ 2β + β2 Xσ 2 , Xσ 3 Zσ , Xσ Zσ 11σx σyσx σy11
5 β = 0 Zσ , Zσ 2 , Zσ 3 σz11 11σz σzσz

Figure 3. Phase-space picture corresponding to the construction in table 3.

Exceptional curves (4.7) have quite a different structure. Now, every point is doubly
degenerate and can be obtained from equations that relate powers of α and β:

α2 = µ2α, β2 = µβ. (4.9)

It is impossible to write an explicit nontrivial equation of the form f (α, β) = 0 for them.
The existence of these curves allows us to obtain interesting arrangements of MUB operators
in tables that do not contain any axis (z, x or y). There are two of such structures, shown in
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Table 4. Bundle of exceptional curves and its corresponding operators.

Basis Curves and rays Displacement operators Factorized operators

1 α = κ + κ2 Xσ 3 , Zσ 3 , Zσ 3 Xσ 3 σxσx σzσz σyσy

β = σκ + σ 2κ2

2 α = σ(κ + κ2) Xσ , Zσ 2 , Zσ 2 Xσ σx11 11σz σxσz

β = σκ + σκ2

3 β = σα + α2 Zσ 2 Xσ 2 , Zσ 3 Xσ 2 , Zσ 11σy σzσy σz11
4 α = σ 2β + β2 Xσ 2 , Zσ Xσ 3 , Zσ Xσ 11σx σyσx σy11
5 β = σα Zσ Xσ 2 , Zσ 2 Xσ 3 , Zσ 3 Xσ σzσx σxσy σyσz

Figure 4. Phase-space picture corresponding to the construction in table 4.

Table 5. Bundle of exceptional curves and their corresponding operators.

Basis Curves and rays Displacement operators Factorized operators

1 α = κ + κ2 Xσ 3 , Zσ 3 , Zσ 3 Xσ 3 σxσx σzσz σyσy

β = σκ + σ 2κ2

2 α = σ 2(κ + κ2) Xσ 2 , Zσ , Zσ Xσ 2 11σx σz11 σzσx

β = σ 2κ + κ2

3 β = σ 2α + α2 Zσ 2 , Zσ 3 Xσ , Zσ Xσ 11σz σyσz σy11
4 α = σβ + β2 Zσ 2 Xσ 2 , Zσ 2 Xσ 3 , Xσ 11σy σxσy σx11
5 β = σ 2α Zσ Xσ 3 , Zσ 2 Xσ , Zσ 3 Xσ 2 σyσx σxσz σzσy

Figure 5. Phase-space picture corresponding to the construction in table 5.

tables 4 and 5, and in figures 4 and 5. As can be seen from the rightmost column in both
tables, the physical difference between the two structures is that the two qubits are permuted
between them. The lines marked 2, 3 and 4 in both tables lead to factorable MUBs, while the
lines marked as 1 and 5 give maximally entangled ones.
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Table 6. Bundle of four exceptional curves and a ray and its corresponding operators.

Basis Curves and rays Displacement operators Factorized operators

1 α = σ 2(κ + κ2) Xσ 2 , Zσ , Zσ Xσ 2 11σx σz11 σzσx

β = σ 2κ + κ2

2 α = σ(κ + κ2) Xσ , Zσ 2 , Zσ 2 Xσ σx11 11σz σxσz

β = σκ + σκ2

3 β = α + α2 Zσ 2 Xσ 3 , Zσ 3 , Zσ Xσ 3 σxσy σzσz σyσx

4 α = β + β2 Zσ 3 Xσ 2 , Xσ 3 , Zσ 3 Xσ σzσy σxσx σyσz

5 β = α Zσ Xσ ,Zσ 2 Xσ 2 , Zσ 3 Xσ 3 σy11 11σy σyσy

Finally, there is a last table containing two exceptional curves and a ray corresponding to
the spin operators in the y-direction, as it is shown in table 6.

To sum up, there exist fifteen different Abelian structures, five rays and ten curves, which
can be organized in six different forms with respect to MUBs. The existence of only six bundles
of mutually nonintersecting Abelian nonsingular curves (i.e., different tables) also follows
from the fact that the coset of the full symplectic group, which preserves the commutation
relations (2.7), on operations corresponding to nontrivial permutations of columns and
rows of (any) table (generated by the symplectic group Sp(2,GF(4))), is precisely of
order 6.

5. The effect of local transformations

As we have noticed, different arrangements of operators in tables (or bundling of phase-space
curves) lead to the same separability structure. To understand this point, let us study the
effect of local transformations. In other words, we wish to characterize how a given curve
changes when a local transformation is applied to a set of operators labelled by points of this
curve.

To deal with such operations with curves, let us recall that a generic displacement operator
is factorized in the self-dual basis as

ZαXβ = (
σa1

z σ b1
x

)(
σa2

z σ b2
x

) ≡ (a1, b1) ⊗ (a2, b2). (5.1)

It is clear that under local transformation (rotations by π radians around the z-, x- or y-axes)
applied to the j th particle (j = 1, 2), the indices of the displacement operators are transformed
as follows:

z-rotation: (aj , bj ) → (aj + bj , bj ),

x-rotation: (aj , bj ) → (aj , bj + aj ),

y−rotation: (aj , bj ) → (aj + aj + bj , bj + aj + bj ) = (bj , aj ).

(5.2)

To give a concrete example, suppose we consider a z-axis rotation. The operator σz,
corresponding to (aj = 1, bj = 0), is transformed into (aj = 1 + 0 = 1, bj = 0); i.e.,
into itself, while, e.g., the operator σx , corresponding to (aj = 0, bj = 1), is mapped onto
(aj = 0 + 1 = 1, bj = 1), which coincides with σy . In the same way σy is mapped onto σx ,
while the identity (aj = 0, bj = 0) is mapped onto itself.
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Table 7. Curves and their corresponding transformations from α = 0, β = σ 2κ (left) and β = σα

(right). The x-, y- and z-rotations are indicated as x, y and z, respectively.

Curve (ray) Transformation Curve (ray) Transformation

α = σ 2(κ + κ2) 11⊗y α = κ + κ2 z ⊗ y

β = σ 2κ + κ2 β = σκ + σ 2κ2

α = σ(κ + κ2) y⊗11 β = σ 2α x ⊗ x

β = σκ + σκ2

β = 0 y ⊗ y β = α2 11⊗x

β = α z ⊗ z β = α + α2 11⊗y

β = σα + α2 y ⊗ z α = β + β2 y⊗11
β = σ 2α + α2 z ⊗ y

α = σβ + β2 11⊗z

α = σ 2β + β2 z⊗11

In terms of field elements these transformations read

z-rotation: α → α + θj tr(βθj ),

β → β,

x-rotation: α → α,

β → β + θj tr(αθj ),

y-rotation: α → α + θj tr[(α + β)θj ],

β → β + θj tr[(α + β)θj ].

(5.3)

In particular, applying the above transformations to a ray (4.1) we get

z-rotation: α → (η + ζθj )κ + κ2ζ 2,

β → β = ζκ,

x-rotation: α → α = ηκ,

β → (ζ + ηθj )κ + κ2η2,

y-rotation: α → (η + ζθj + ηθj )κ + κ2(ζ + η)2,

β → (ζ + ζθj + ηθj )κ + κ2(ζ + η)2,

(5.4)

which are explicitly nonlinear operations.
Note that the z- and x-transformations produce regular curves starting from a ray

z-rotation: α = ηζ−1β → (ηζ−1 + θj )β + β2,

x-rotation: β = η−1ζα → (η−1ζ + θj )α + α2.
(5.5)

Meanwhile, the y-rotation may lead to an exceptional curve (as it happens when we start with
the horizontal or the vertical axes, ζ = 0 or η = 0).

An important result to stress is that it is possible to obtain all the curves of the
form (4.6) and (4.7) from the rays after some (nonlinear) operations (5.4), corresponding
to local transformations. The families of such transformations are the following:

(I) The rays and curves corresponding to factorable basis can be obtained from a single ray
α = 0, β = σ 2κ (vertical axis) as shown in table 7 (left).

(II) The rays and curves corresponding to nonfactorable basis can be obtained from the ray
α = σκ, β = σ 2κ (β = σα) as shown in table 7 (right).
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Table 8. Transformation operators converting table 1 into each one of the tables indicated in the
left column. Again, x-, y- and z-rotations are indicated as x, y and z, respectively.

Table Transformation

2 x⊗11
3 11⊗z

4 y ⊗ z

5 y ⊗ x

6 11⊗y

This means that all the different tables can be generated from the standard one, given in
table 1, by applying only local transformations that do not change the factorization properties
of the MUBs. So, tables 2 to 6 are obtained from table 1 from the transformations given in
table 8.

The full set of striations for each bundle of curves (each table) is obtained by constructing
‘parallel curves’ in the bundle in an obvious way:

αλ(κ) = µ0κ + µ1κ
2, βλ(κ) = η0κ + η1κ

2 + λ, (5.6)

with λ ∈ GF(4). It is clear that no (αλ(κ), βλ(κ)) curve intersects the curve (αλ′(κ), βλ′(κ))

for λ 
= λ′.

6. Extension to larger spaces

The relation between Abelian curves in discrete phase space and different systems of MUBs
can be extended to higher (power of prime) dimensions. For the most interesting n-qubit case,
a generic Abelian curve (4.2) has the following parametric form

α(κ) =
n−1∑

m=0

µmκ2m

, β(κ) =
n−1∑

m=0

ηmκ2m

, (6.1)

with µm, ηm, κ ∈ GF(2n), and the commutativity condition takes now the invariant form
∑

m
=k

tr(µmηk) = 0. (6.2)

The simplest example of such curves is obviously the rays, parametrically defined as in
equation (4.1), where conditions (6.2) are trivially satisfied. Imposing the nonintersecting
condition we can, in principle, get all the possible bundles of commutative curves.
Nevertheless, in higher dimensions it is impossible to obtain all the curves from the rays by local
transformations. This leads to the existence of different nontrivial bundles of nonintersecting
curves, and consequently to MUBs with different types of factorization [22, 37].

The problem of classification of bundles of mutually nonintersecting, nonsingular Abelian
curves and its relation to the problem of MUBs in higher dimensions, and in particular the
transformation relations between different MUB structures, will be considered elsewhere.

7. Conclusions

A new MUB construction has been worked out, with special emphasis on the two-qubit
case. Its essential ingredient is a mapping between displacement operators, physical spin-1/2
operators and discrete phase-space curves. In phase space any nonsingular bundle of curves
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that fills every point and has only one common intersecting point (here taken to be the origin)
will map onto a MUB. The corresponding displacement operators can be obtained from these
phase-space curves.

For the two-qubit case, we have derived all the admissible curves and classified them into
rays and curves (regular and exceptional, depending on degeneracy). In total, six different
bundles can be constructed from the set of five rays and ten curves. We have also shown how
the six tables representing sets of MUBs are related by local transformations, i.e., physical
rotations around the x-, y- and z-axes. It is obvious that such rotations will not change the
MUBs entanglement properties.

A Wigner function can also be associated with each phase-space structure. Although we
have not pursued this topic in the paper, it is straightforward to use any of the phase-space
structures and follow the algorithm described in [33] (although in that paper the construction
applies only to rays) to obtain such a function [40].

It is also formally straightforward to extend the method to any Hilbert space whose
dimension is a power of a prime. However, only in the bipartite case one will find that all
structures are related through local transformations. Already in the tripartite case different
classes of entanglement exist [37], and consequently some MUB structures are related through
nonlocal (entangling) transformations. The extension of the present method provides a
systematic way to find these transformations.
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